Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.
نویسندگان
چکیده
Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.
منابع مشابه
Comparative transcriptomic and proteomic profiling of industrial wine yeast strains.
The geno- and phenotypic diversity of commercial Saccharomyces cerevisiae wine yeast strains provides an opportunity to apply the system-wide approaches that are reasonably well established for laboratory strains to generate insight into the functioning of complex cellular networks in industrial environments. We have previously analyzed the transcriptomes of five industrial wine yeast strains a...
متن کاملProteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae.
We report a study on the adaptive response of a wild-type wine Saccharomyces cerevisiae strain, isolated from natural spontaneous grape must, to mild and progressive physiological stresses due to fermentation. We observed by two-dimensional electrophoresis how the yeast proteome changes during glucose exhaustion, before the cell enters its complete stationary phase. On the basis of their identi...
متن کاملExtensive Copy Number Variation in Fermentation-Related Genes Among Saccharomyces cerevisiae Wine Strains
Due to the importance of Saccharomyces cerevisiae in wine-making, the genomic variation of wine yeast strains has been extensively studied. One of the major insights stemming from these studies is that wine yeast strains harbor low levels of genetic diversity in the form of single nucleotide polymorphisms (SNPs). Genomic structural variants, such as copy number (CN) variants, are another major ...
متن کاملMolecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation.
Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of...
متن کاملModification of the TRX2 gene dose in Saccharomyces cerevisiae affects the transcriptome and proteome during wine yeast biomas
21 In the industrial yeast biomass production process, cells undergo an oxidative and other 22 stresses which worsens the quality of the produced biomass. The overexpression of the 23 thioredoxin codifying gene TRX2 in a wine Saccharomyces cerevisiae strain increases 24 resistance to oxidative stress and industrial biomass production yield. We observed that 25 variations in the TRX2 gene dose i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 72 1 شماره
صفحات -
تاریخ انتشار 2006